
Price is All You Need

Marco Boucas
Magali Morin

CentraleSupélec
{firstname.lastname}@student-cs.fr

Abstract

The objective of this paper is the design of a vision sys-
tem that detects products and their associated prices from a
picture of a supermarket shelf. The problem is decomposed
into two parts: i) detection of the products and the differ-
ent price labels on the shelves, and ii) identification of the
monetary value of a product from its corresponding label.

Our code is publicly available on github §. The data and
trained models are available here: Weights and Data folder
(you just need to put the 2 folders in the root directory of
the project.

To get near a real production use, we developped a
streamlit interface, that helps see the different steps of the
project (from the product detection, using YOLO, to the
price tag detection and the value of the price identification).
A small video demonstration is available here

1. Introduction
1.1. Context

We have seen recently an increase in terms of food
prices, for instance, the cost of fruits and vegetables in-
creased by around 9% compared to 2019. Hence, a familly
of four people would need 700C to be able to eat healthy
food according to Familles Rurales. And this trend is more
general, impacting also the price of pasta, semolina, cous-
cous and fish. In general, the rise is around 1.4%.
The idea of this project is to help low revenue people to
eat healthy while complying with their goal of reducing the
food cost, by pointing them to low-cost products.

2. Related work
Object detection was originaly made using methods at

the opposite range of machine statistical learning. Such
methods, like SIFT [9] or HOG [2], were based on the com-
putation of gradients of the image in order to generate fea-
tures of an image. It is first in the 1990s with the first ap-
pearance of CNNs [14] and the regain in interest in 2012

with Krizhevsky et al. [1], that using deep learning (more
precisely Convolutional Neural Networks) for computer vi-
sion was considered.

In 2014, the first application of deep learning for object
detection comes into life with R-CNN [11]. The main idea
for this model was to use a deep learning model to classify
different regions, using a model pre-trained on a large auxil-
iary dataset (ILSVRC2012 classification). The regions were
generated using a different method, such as the Selective
Search [13], based on a hierarchical grouping algorithm, to
generate around 2000 region proposals. This method leads
to higher object detection performance on PASCAL VOC,
wtih a mAP of 58.5%, to compare with the 34.3% for a
DPM method based on HOG features.

The main pain-point of this approach is the time spent
computing the results on each region proposal, which is not
suitable for a production approach. Advances such a Fast
R-CNN [3], which applied the region proposal computation
on the feature map of a CNN, reducing the cost of the final
classification of each region, exposed the region proposal
computation as the final bottleneck.

To achieve near real-time object detection, Faster R-
CNN [12] was released in a paper in 2015, getting rid of the
usual region proposal methods and replacing those with a
Region Proposal Network, with a shared convolutional layer
with the object detection networks, reducing drasticaly the
cost for computing proposals.

When it comes to real-time object detection, we can-
not avoid speaking about YOLO [5]. It proposed a unified
model that both generate the boxes, assess the confidence
for each box and the probability of each class for it. It has
to be noted that YOLO is one of the easiest way to do ob-
ject detection in production (around 45 frames per second
for the first version of the model).

As explained in the context, we are using the dataset
from the CVPR2021 Product Pricing Challenge. This chal-
lenge is now ended, and we decided to inspire our project
by looking at the top participant’s reports.

In the winning team report USTC-NELSLIP [6], they de-
cided to use an object detection model to detect the price

1

https://github.com/magalimorin18/price_detection_deep_learning
https://drive.google.com/drive/folders/147fTbdhXe5UB6iGQicHKYLORPxx6wf4_?usp=sharing
https://youtu.be/08rauwKUgjE

Figure 1. The architecture we will be using (Faster R-CNN). The
conv layers that first operate on the image correspond to the back-
bone we will be changing.

tags. In fact, this process has been done for the top3 teams
of the challenge. They decided to develop the model step
by step, with different processes taking care of different
features. One major point of interest in their report is the
definition of the confidence of the global pipeline for one
particular price tags. Because a result comes after going
through the all pipeline, they carefully designed their confi-
dence for each part of their process, and multiplied the end
results. For the model that handles matching products and
price tags together on the image, they used the following
confidence function:

C =
(
∑n

k=1 D
2
k)−D2

i∑n
k=1 D

2
k

(1)

with (D1, D2, ..., Dn) being the distances between one
product and all the price tags, Di denotes the smallest dis-
tance for this product. Even if this task is far much easier
than finding the right price written on the tag, it is important
to take into account the confidence in the tag itself.

Considering the creation of the price tags dataset, we de-
cided to use something similar to what is proposed in the
2nd solution report [8], which is basicaly an active method
(human in the loop) method to annotate the dataset.

Optical character recognition (OCR) is a technology
used to convert any kind of image containing written text
into machine readable text data. The earliest use of optical
character recognition can be traced back in the 1970’s when
Ray Kurzweil created a reading device for the blind [7]. In
the 1990’s, OCR became very popular to digitize historical
documents as it saved a lot of time and reduced inaccura-
cies and typing errors when manually retyping a text. To-
day, OCR services are widely available to the public and are

mainly used to scan and store documents on smartphones
[10].

In our case, we want to extract the price from the pric-
etag. As some labels are printed and other written by hand,
there are different fonts and structures of the text which
raised some difficulties to the task. Contour detection al-
lowed us to detect the text appearance on the image in order
to recognize the character one by one.

3. Price Detector
We aim to develop during our project a Price Detector,

which should be a system that takes an image of a supermar-
ket shelf and automatically detects the different products lo-
cations and their associated prices. To make this work, we
decided to break the process into smaller steps, each one of
them taking care of one essential part of the job:
• A product detection (using YOLO)

• A price box detection

• A matching between products and prices

• An OCR (to extract the value of the price)

4. Experiences
4.1. Price Tags Dataset

For the price tags detection, we proceded using the fol-
lowing steps:
• Annotate a few images (around 50) with some of the most

common price tags + some more exotic ones

• Use our model to annotate new images

• Fix the annotations if needed

• Retrain the model on all the newly formed dataset

• Continue until the images are labelled

• Split the dataset into train and set (the model used to an-
notate is then destroyed)

• Find the best model using hyperparameter tuning, using
for a measure of performance using the IoU Metric

4.1.1 First results after 50 images

Using the first dataset (containing around 50 images, for a
total of around 1000 tags), we can already analyze the first
batch of images, to see the potential pain points of the model
(and when it performes the best).

From those samples of model output on unseen data, we
can say a few things:
• Classic price tags are for the main part correctly detected,

and the box contains the relevant information (price here).

2

Figure 2. The representation of our complete pipeline

Figure 3. Example of the model predictions, with quite good re-
sults in overall, some bottle tags are misclassified as price tags.

Figure 4. For classic bottle tags, the model seems to correctly iden-
tify the price tags.

Figure 5. In some cases (mostly wiskey bottles), the model is con-
fused with the bottle tags.

• More original price tags (like in figure 4) are also de-
tected, but contain a lot of boxes inside. We decided to
use some hierarchical based algorithm to remove those
”child” boxes

Figure 6. Some more exotic price tags are correctly detected, even
if the number of boxes will have to be dealt with.

• Some product tags are also detected as price tags, which
is not good. To avoid that, we will remove predictions
that overlap too much with a product.

4.2. Price Tag Detection

Using our labelled dataset, we aim to find the model
that find all the price boxes. We will use a Faster R-CNN
model with different backbones and vary some hyperparam-
eters to find the model that maximizes our relevant metric.
From a user point of view, the key metric seems to be to
correctly matching the tags, and to avoid having to much
tags wrongly placed on the image. Even if we are selecting
the tags based on the distance, we can’t afford having tags
placed incorrectly near each products.

4.2.1 IoU Metric

Our metric will be a generalized IoU (Intersection over
Union) over all the price tags. The IoU, in the case of only
one box on an image, can be computed easily:

IoU =
AreaofOverlap

AreaofUnion

In a more generalized situation, with yi,j = 1 if the pixel
(i, j) is in one of the boxes of the true price tags (else 0),

3

and ˆyi,j for the predicted boxes, we can compute the IoU
using the following formula:

IoU =

∑
i

∑
j yi,j ∧ ŷi,j∑

i

∑
j yi,j ∨ ŷi,j

4.2.2 Hyperparameter tuning

We will be fine-tuning a Faster R-CNN model, with dif-
ferent backbones and different hyperparameters. In order
to find the best set of hyperparameters for our fine-tuned
model, we will split our dataset into 3 sets (train, val and
test with the usual 70%, 15%, 15% partition), and we will
evaluate the ”performance” of several hyperparameters on
the validation set).

As for the exploration method, we will apply a Random
Search instead of a Grid Search, due to time and computa-
tion constraints. The process will be iterated several times,
to focus the search each time on the most promising pa-
rameters (distributions will be narrowed accordingly at each
stage of the process).

We will be optimizing the following hyperparameters
during the random search:
• The backbone, either resnet50 or mobilnetv3

• The learning rate, from a log uniform distribution ranging
from 1e−5 to 1e−1

• The weight decay, either null or from a log uniform dis-
tribution to 1e−3

• The number of epochs for the fine-tuning, from a uniform
distribution ranging from 2 to 10

4.2.3 First results analysis

After running the hyperparameter tuning on several sets of
parameters (learning rate, number of epochs, ...), we can
check the model’s results using our metric (see Table 1).

From this first round of train, we can gather some in-
sights about the ”best model configuration”:
• All the top models have learning rates around 10e-3. We

will try to dig up around this value later. These values are
close to those used in the training of the original model
(from 0.1 to 1e-4 according to the original paper [4]) for
Resnet50 and mobilnets models.

• The ideal number of epochs seems to be a bit less than
10, even if the fifth model performs quite good with only
3 epochs and a bigger learning rate. Suggested also by the
training curves

• The best model after this first round is a resnet50 model,
with 0.13 points more in terms of mean IOU, which is
quite impressive compared to the second model for in-
stance.

4.2.4 Resnet50 models

This first set of training results raises some questions, we
will take a closer look at the worst samples for the winning
model to verify its performance (and the best ones too). We
will also add an early stopping into the pipeline, to try to
find the best time to stop the training.

After the second training, which stopped after the 13th
epoch, we have the following evolution of the IoU score:

Figure 7. IoU metric during the training of the model

But this is not the final score, using our test dataset
and also our method to remove overlapping price tags and
products (which uses YOLO to identify the products), we
have a final IoU Custom score of 0.66 mean (0.59 without
the overlapping method). The test set is small because it
takes time to generate a large dataset. It consists of 20
samples (images with multiple price tags on each, about
20/30 per image). Here are the full results:

Mean IoU std min 25% 50% 75% max
0.661 0.16348 0.284 0.579 0.688 0.756 0.889

After careful examination of the validation test (mainly
on the lowest rated images), the model sometimes detects
price tags in places where they should not be, mostly due
to the perspective (bottle tops that are not at the same dis-
tance from the camera than all the products, appear big-
ger). Also sometimes, due to the light reflection on plastic
bars, price tags appear almost white. To make more sense
of those results, you can see at the end of this document
some examples of the final model predictions: Some price
tag detections with the final model (test set) (green: truth,
red: predictions)

4.3. Matching prices and products

One small step of our pipeline is the matching between
the different price boxes and the product boxes. After some
examinations of the training set, we can make a few as-
sumptions about how the prices are located related to their
corresponding product:

4

IOU Mean IOU Max IOU Min IOU std Model Type Learning Rate Epochs
23 0.583 0.832 0.295 0.157 resnet50 2.4e-3 8
13 0.456 0.705 0.206 0.138 mobilnetv3 3.1e-4 11
20 0.453 0.677 0.253 0.132 mobilnetv3 7.5e-4 7
15 0.445 0.652 0.192 0.135 mobilnetv3 4.5e-4 9
6 0.435 0.672 0.214 0.144 mobilnetv3 1.3e-4 3

Table 1. Hyperparameters tuning

Figure 8. Here is a possible match between the products and their
price tags, sometimes the price tag seems not to be written

• The prices are generally below (a few exceptions, with
sometimes the price written on the products, but those
elements are very rare in our dataset and considered as
outliers)

• When a batch of products of the same type is displayed,
they are on the same shelf and their price is below the
group.

• In most of the cases, the bottom of the product is near the
top of the price tag

Considering those observations, we decided to move for-
ward with a pondered L2 distance, which penalizes the y
axis more than the x axis (corresponds to the 2nd hypothe-
sis).

D(x1, y1, x2, y2) =
√
(x2 − x1)2 + λ ∗ (y2 − y1)2

With λ = 2.1 being the parameter that prefers x variations
over the y variations. This value has been selected as the
best proposition using a cross-validation over our dataset.

4.4. Price value using OCR

We used an OCR to predict the price correponding to
each price tag. In our dataset there are four types of price
tags.

Figure 9. Types of price tags

In order to predict the price, each price tag underwent a
series of transformations.

4.4.1 Detecting contours

A price tag undergoes a series of transformation in order to
make the contour detection more efficient.
1. Original price tag image

2. Conversion into black and white image

3. Reversion of the colors of the price tag

4. Detection of the contours with the library open CV
The picture below shows the different steps of the trans-

formation.

Figure 10. Steps of the transformation of a price tag for contour
detection

Once digits contours are detected, boxes are created
around them to crop the price tag on a single digit image.

5

4.4.2 Filtering boxes

Figure 11. Delimiting digits with boxes

The boxes are then filtered according to the specific
properties of a price.
• Digits have greater height than width

• Digits shouldn’t be overlapping

• Digits can’t be too close to the edges of the price tag

• Digits have to have a minimum size

Figure 12. Filtering boxes with digit specificities

4.4.3 Predicting digits

Once digit images are extracted from a price tag, we use
a CNN model to predict the digit. The CNN model was
originally trained on the MNIST dataset and we finetuned
it on the digit images dataset we created.We thought it best
to do this for several reasons : the small size of our dataset,
to benefit from the training on the MNIST and the patterns
already learned by the model). We created a dataset of an-
otated digits thanks to Jupyter BBoxWidget. Each type of
price tag of our dataset is represented in our training, vali-
dation and test set.

Figure 13. Annotate digits with Jupyter BBoxWidget

Figure 14. Distribution of digits in the train, test and val set. As
expected, the digit ”9” is over-represented in our datasets, we care-
fully removed some of those to make the dataset more balanced.
But we need to keep in mind that some digits are not common in
prices.

We tested two different finetuning. First, to finetune all
the layers of the model and then to finetune only the last
layer. We obtained higher performances when finetuning
all layers so we saved this model and used it to predict the
digits on the price tags.

Figure 15. Performances of the finetuned models. Those confu-
sion matrices shows us that the model is sometimes confused when
confronted against some digits. For instance, some digits ”4” are
confused with the ”2”, same for ”3” and ”6”. And there are some
confusions with the ”9”, probably because of the dataset not being
totally balanced even after removing ”9”.

The MNIST dataset consists of 28 X 28 black and white
digit images. We transformed digit images from our dataset
to look like images from the MNIST dataset in order to ob-
tain better performances. Black borders were added on the
sides and the size was changed to 28 X 28.

• Black borders were added on the sides of the image

• Size was changed to 28 X 28.

Pour l’entraı̂nement, nous avons choisi un batch size de
100 et un learning rate de 0.001.

6

Figure 16. Digit transformation (from left to right) to look like the
MNIST dataset (on the right)

Figure 17. Evolution of the loss when training the model

4.5. Overall Pipeline

The initial challenge was to predict the price of some
products, we plugged our pipeline (detection of the price
tags + OCR to detect the price) together and used it to pre-
dict the price of each product. The final results are not that
good because the OCR struggles to identify the prices cor-
rectly, but we still have some good matches.

Figure 18. Distribution of the difference between the predicted
price and the real one, in euros

To get a better idea of how well the model is predicting
the price, here are some numbers:

Proportion Difference in euros/dollars
0.8% 0.00 $C (perfect match)
4.9% 0.50 $C
10% 1.00 $C

14.8% 5.00 $C
50.1% 25.00 $C

Table 2. Proportion of the dataset for which the difference is below
the threshold. As you can see on the results above, the model is
not able to correctly predict the price most of the time. In fact, if
we consider a difference of 1C (which is already high sometimes),
the model is able to predict the correct price only 10% of the time

5. Conclusion
As we can see, at the end of the project, our model is able

to identify the different price tags for each product, achiev-
ing good results on the classic price tags (the european ones,
that are formatted properly). One pain point of our model is
when it is confronted to unformatted price tags, the model
might not be able to generelize correctly (even if it shows
quite good results in our dataset).

What could be the next steps would be to combine the
object detection model and the price tag detection model,
in order to have only one model. Furthermore, using the
YOLO architecture, it would really allow a real time object
detection (and even on mobiles, with the small versions of
Yolo, like for instance Tiny-YOLO).

The OCR could be improved by training the model on
a larger database of digits from price tags of our dataset.
Moreover, changing our method to detect digits, by using
another object detection model, might be a solution to avoid
detection problems when digits are very close from each
others.

One last pain point of our model is to understand what
kind of money is used in the tags, because the current for-
matting will not take into consideration this. For instance,
in Europe, we are using euros, and the prices are usually
less than 100C for products of our everyday-life, but when
it comes to countries were the value of a product is much
higher (more than 100 units of money), our model might
not be able to tackle this properly.

6. References

References
[1] I. Sutskever A. Krizhevsky and G. Hinton. Imagenet classifi-

cation with deep convolutional neural networks, 2012. NIPS.
1

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection, 2005. CVPR. 1

[3] R. Girshick. Fast r-cnn, 2015. ICCV 2015,
arXiv:1504.08083. 1

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 4

7

[5] R. Girshick A. Farhadi J. Redmon, S. Divvala. You
only look once: Unified, real-time object detection, 2015.
arxiv:1506.02640. 1

[6] Z. Cui H. Xie Z. Zhang Y. Yu W. Su F. Gao
J. Yu, L. Zhang and F. Shuang. A solution for
product pricing in densely packed scenes, 2021.
https://retailvisionworkshop.github.
io/pricing_challenge_2021/. 1

[7] Forough Karandish. Un guide facile pour comprendre la re-
connaissance optique de caractères (ocr), 2021. 2

[8] A. Kozlov. Read and match: a strong baseline
and 2nd place solution to product pricing, 2021.
https://retailvisionworkshop.github.
io/pricing_challenge_2021/. 2

[9] D. Lowe. Distinctive image features from scale-invariant
keypoints, 2004. IJCV. 1

[10] Matt Mills. Ocr, histoire et fonctionnement de cette tech-
nologie de reconnaissance, 2020. 2

[11] T. Darrell R. Girshick, J. Donahue and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation, 2014. 1

[12] R. Girshick S. Ren, K. He and J. Sun. Towards real-
time object detection with region proposal networks, 2015.
arXiv:1506.01497v3. 1

[13] Jasper Uijlings, K. Sande, T. Gevers, and A.W.M. Smeul-
ders. Selective search for object recognition, 2013. IJCV,
104(2): 154-171, DOI:10.1007/s11263-013-0620-5. 1

[14] Y. Bengio Y. LeCun, L. Bottou and P. Haffner. Gradientbased
learning applied to document recognition, 1998. Proc. of the
IEEE. 1

8

https://retailvisionworkshop.github.io/pricing_challenge_2021/
https://retailvisionworkshop.github.io/pricing_challenge_2021/
https://retailvisionworkshop.github.io/pricing_challenge_2021/
https://retailvisionworkshop.github.io/pricing_challenge_2021/

Figure 19. Some price tag detections with the final model (test set) (green: truth, red: predictions)

9

